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Vortex dynamics in a coarsening two-dimensionalXY model
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The vortex velocity distribution function for a two-dimensional coarsening nonconserved O~2! time-
dependent Ginzburg-Landau model is determined numerically and compared to theoretical predictions. In
agreement with these predictions the distribution function scales with the average vortex speed which is
inversely proportional totx, wheret is the time after the quench andx is near 1/2. We find the entire curve,
including a large speed algebraic tail, in good agreement with the theory.
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I. INTRODUCTION

It is important to understand the role of defects in pha
ordering@1# problems. We investigate here the growth kin
ics of the nonconserved O~2! symmetric time-dependen
Ginzburg-Landau~TDGL! model in two dimensions after
quench from a disordered high temperature state to zero
perature. The dominant structures in the ordering kinetic
this system are vortices with charges61. Vortices with
higher order charges are unstable. Various aspects of the
fect structure have been explored in some detail before@2,3#.
We focus here on a numerical determination of the veloc
distribution of the vortices as a function of timet after the
quench. Theory predicts@4# that the distribution function
scales with the average vortex speed which is inversely
portional to a length scaleL(t), which grows with timet
after the quenches. One also finds a large speed algebra
in good agreement with predictions of an exponent of23. In
terms of the velocity distribution this corresponds to an
ponent of24. The number of vortices is also counted and
evolution in time is found to be consistent with previo
work @5#.

The disordering agents in the phase ordering of then
5d52 nonconserved TDGL model (2dXY model! are well
known, whered is the spatial dimension andn is the number
of the components of the order parameter. One has un
charged vortices and, at nonzero temperature, spin wave
we focus on quenches to zero temperature, we have only
vortices to consider. Thus a typical vortex configuration
shown in Fig. 1. As the time evolves one has vortex antiv
tex annihilation until finally there are no surviving vortice
and the system is fully ordered~we only consider the zero
temperature case with no thermal fluctuations, where the
tem does eventually order!. For generaln5d, Rutenberg and
Bray @6# have shown that the growth law for such systems
given by L(t)'t1/2. The exception is forn5d52 where
their method is mute. The growth law for this case w
treated by Pargelliset al. @7#, and checked numerically b
Yurke et al. @5#. There is a logarithmic correction to the sca
ing law: L(t)'@ t/ log(t)#1/2.

There has also been theoretical work on the dynamic
these vortices. Mazenko@4# showed that if the order param
eter can be assumed to be a Gaussian field@8# when con-
strained to be near a vortex core, then the vortex velo
probability distribution, forn5d @4,9#, has the simple form
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P~vW !dnv5
G~11n/2!

~ps2!n/2

1

~11v2/s2!(n12)/2
dnv, ~1!

where the scaling speeds varies asL21 for long times. If we
only care about the magnitude of the velocity and integr
out the directions, then in the case ofn5d52 we have the
speed probability distribution

P~v ! dv5
2

s2

v

~11v2/s2!2
dv,

or equivalently

P~ ṽ ! dṽ5
2a ṽ

~11aṽ2!2
dṽ, ~2!

with a5(p/2)2 and ṽ5v/ v̄, where the average speedv̄
5ps/2. So, after being scaled with the average speed,

FIG. 1. A typical vortex configuration in a 2563256 system
with lattice spacingDr 5p/4. The arrow on each each site repr
sents the order parameter at that point. Not all the lattice sites
shown. The squares and triangles are in the core regions of11 and
21 vortices, respectively, where the magnitude of the order par
eter is near zero. The vortex core regions are picked out by u
the method described in the text.
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vortex speeds have the same probability distribution at
ferent times. A key feature of the predictions forP(v) is that
there is a large velocity algebraic tail;v23. This tail was
also found using scaling arguments by Bray@10#. In this
paper we check these predictions numerically for the c
n5d52. We find that velocity probability distribution func
tion does obey scaling of the form predicted by Eq.~2!. But
the average speed falls off ast21/2 without the logarithmic
correction, and there is a large speed tail consistent with
exponent of23.

We have also monitored the vortex densitynv as a func-
tion of time and find, in agreement with previous work@5#,

nv}Lv
22~ t !, ~3!

whereLv(t)}@ t/ ln(t)#1/2. The vortex number density shoul
be proportional to the system’s energy above its ground
ergy E0 (52e2/4) per unit area, wheree is the control
parameter of the system@see Eq.~4! below#. Our simulation
verifies this result.

II. SYSTEM DESCRIPTION

The system we study is described by the Langevin eq
tion

]c i

]t
5ec i1¹2c i2~cW !2c i , ~4!

where i 51,2 are the indices for the two components of t
order parametercW . The noise term is zero because the s
tem is quenched to zero temperature. By choosing pro
units for the time and space and rescaling the order par
eter,e can take on any positive value. The equation is put
a square lattice with periodic boundary conditions and driv
by the finite difference scheme, i.e., replacing] tc i(r ,t) by
@c i

m11(kl)2c i
m(kl)#/Dt, with m being the time step num

ber, and¹2c i(r ,t) by

¹2c i~kl !5
1

~Dr !2 F2

3 (
NN

1
1

6 (
NNN

2
10

3 Gc i~kl !, ~5!

where NN and NNN mean the nearest neighbors and n
nearest neighbors, respectively, and the lattice point isr /Dr
5(k,l ). HereDt is the time step andDr is the lattice spac-
ing. Both are dimensionless.

We have studied two systems in some detail. In both
choosee50.1 and use 102431024 lattice sites. In system 1
or the bigger system, we useDt50.02 andDr 5p/4. In
system 2, or the smaller system, we useDt50.01 andDr
5p/8. In both we measured the vortices number and
system energy. We measured the vortex speed distribu
only in the bigger system.

We prepare the system initially in a completely disorde
state. The average magnitudeM̄ of the vector order param
eter cW at time t is calculated and the vortices’ core regio
are identified with those sites on which the order param
magnitudesucW u,M̄ /4. Usually each core has about ten sit
02110
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in it. Here the coefficient 1/4 is appropriately chosen so t
no vortices are missed and no irrelevant points are picke
circular integration around each vortex produces 2p or
22p, which corresponds to two types of vortices of top
logical charges11 and21, respectively. In fact there ar
situations where we obtain charge 0. This is due to the n
zero area of the integration circle. When a pair of11 and
21 vortices annihilate and the distance between them
comes smaller than the size of the integration circle, the
cular integration will reflect the sum of the two charge
which is 0. However, the lifetime of these 0 charges a
much smaller than the lifetime of the61 vortices. So they
do not affect our statistics. We find in our simulations that t
numbers of positive and negative vortices are equal.

The position of a vortex is given by the center of its co
region. Suppose the order parameter’s magnitude at the
region is described byM (xi ,yi) with (xi ,yi) belonging to
the core region. Then by fittingM (xi ,yi) to the function
M (x,y)5A1B@(x2x0)21(y2y0)2# we can find the cente
(x0 ,y0).

The positions of each vortex at different times are
corded, and the speed is calculated usingv5Dd/Dt. Here
Dd is the distance that the vortex travels in timeDt. We
have, simultaneously, recorded the number of vortices a
function of time and checked the scaling result given by E
~3!.

III. NUMERICAL RESULTS

Every dt510 we compute the speed of each vortex w
Dt55, i.e., v5ur (t1Dt)2r (t)u/Dt, with t increasing by
step lengthdt and r being the position of the vortex. We
found that the average speed of the vorticesv̄(t) is propor-
tional to t2x, with x50.5160.01 for the bigger system
(Dr 5p/4) as shown in Fig. 2. Unlike the case forLv(t)
extracted fromnv and (E2E0), we do not observe logarith
mic correction forv̄(t). We cannot rule out such correction
appearing on a longer time scale, but they do not enter on

FIG. 2. The average speedv̄(t) of the vortices for the bigger
system (Dr 5p/4). The speed of each vortex is calculated w
Dt55. t2x is used to fit the data.x50.5160.01 for the system
with Dr 5p/4. The data are averaged over 60 different initial co
ditions.
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same time scale as forLv(t).
We compared the speed distribution at different tim

They have approximately the same shape after being resc
by the average speed. At early times this is clear. At l
times there are fewer data points and the similarity betw
the two distributions at different times is not so appare
Even at early times the number of data points are not eno
to give a good fit to the distribution’s long tail. So we resca
the speed data with the best fit to the average speedv̄(t)
}t20.51 and put the data for all times into one histogram
shown in Fig. 3. By this means we obtain better statistics.
find that the distribution can be well fit to the function

P~ ṽ !5
2aṽ

~11aṽ2!2
, ~6!

for a between 2 and 2.5. The best fit is fora52.12. How-
ever, if we require that the average speed is given by
measured speed, then we must havea5(p/2)252.47. The
best fit and the most consistent fit are both shown in Fig
The distribution has a long tail which is approximate
(v/ v̄)2y with y53. If we just try to fit the long tail, then the
best fit is given bya52.47. These results are in excelle
quantitative agreement with the theoretical prediction in R
@4#.

In these results we have scaled the velocity with;t2z by
takingz5x just as the theory predicts. However, the value
scaling exponentz of the speed distribution is not very robu
in our simulations. If we change the exponentz and uset2z

to rescale the speed distribution at different times, and t
also have approximately the same shape. So the uncert
of z is quite large. After being rescaled byt2z and put into
one histogram, the speed distribution for small and interm
diate values ofṽ are somewhat dependent on the value oz.

FIG. 3. The vortices’ speed distribution probability density f

the Dr 5p/4 systemP„v/ v̄(t)… ~the solid line! fit to the function

P(x)52ax/(11ax2)2, with a52.12 andx5v/ v̄(t). The theoreti-
cal curve witha5(p/2)2 is also shown in the figure. The larg
speed tail of the distribution can be fit tot2y with y53. The inset
shows the same data in the logarithmic scale, and it seems tha
the theoretical curve fits the tail better. The data are averaged
60 different initial conditions. In the calculation of the probabili
distribution we use the bin width of 0.02.
02110
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However, the power-law tail is quite robust. We alter t
value ofz between 0.4 and 0.6, and find that the tail exp
nent changes by less than 0.1.

In both the larger and smaller systems, the vortex num
densities have the same time dependence. We obtainnv
;@ t/ ln(t/t0)#

21, wherenv is the number density of vortice
~positive or negative! andt0 is a constant. In Fig. 4, we show
the data fornvt/S. S is the area of the system. In Fig. 5, w
show the data for the energy per unit area (E2E0)/S timest.
We conclude that the energy density is proportional to
number density of the vortices.

IV. CONCLUSIONS

We have studied the growth kinetics of the nonconser
TDGL model in the case ofn5d52. We measured the
speed probability distribution for the61 vortices. At any
given time with relatively few vortices, the statistics a
poor. However, the accumulated data for all times wh

the
er

FIG. 4. The total number of the vortices per unit area,nv(t)/S,
times t, whereS5(1024Dr )2. In both systemsnvt/S can be fit to
a ln(t/t0). The data from the large and the small systems are a
aged over 68 and 58 different initial conditions, respectively.

FIG. 5. The product of the system energy per unit areaE
2E0)/S with t. The ground state energy isE052e2S/4. The data
can also be fit toa ln(t/t0). The data from the large and the sma
systems are averaged over 68 and 58 different initial conditio
respectively.
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scaled gives a scaling function with good statistics. Althou
the scaling exponentz is 0.5 with significant uncertainty, th
large speed tail does takes the form of (v/ v̄)2y with the
exponenty53. This is consistent with the theoretical predi
tion. The form of the distributionP( ṽ) is quantitatively con-
sistent with the theoretical prediction.

Why does the theory do so well? It was shown by M
zenko and Wickham@11# that one can construct a nontrivia
self-consistent Gaussian theory for the order parameter if
constrained to be evaluated near a vortex core. Such
straints occur naturally, for example, in averages over
vortex density. This suggests that the theory developed
Ref. @4# may be on a firmer footing than first thought.

According to the theory, the average speed should be
ev
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portional to the inverse of the correlation lengthL(t). We did
not observe any logarithmic correction in the average spe
although it appears in the correlation length whenn5d
52. However, a logarithmic behavior may still exist. Th
time we used in our simulations may not be long enough
see the effect.

We also measured the number density of the vortices
the energy density of the two systems. Their time dep
dences both have a logarithmic correction, which is con
tent with previous work.
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