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Vortex dynamics in a coarsening two-dimensionaXY model
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The vortex velocity distribution function for a two-dimensional coarsening nonconsery2y time-
dependent Ginzburg-Landau model is determined numerically and compared to theoretical predictions. In
agreement with these predictions the distribution function scales with the average vortex speed which is
inversely proportional ta*, wheret is the time after the quench amxds near 1/2. We find the entire curve,
including a large speed algebraic tail, in good agreement with the theory.
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I. INTRODUCTION T'(1+n/2) 1

P(v)d" = dv, (D

It is important to understand the role of defects in phase (ms?)"2 (L+v?s?) 202

ordering[1] problems. We investigate here the growth kinet- . . 1 .
ics of the nonconserved () symmetric time-dependent where the scaling speesd/arles ad. " for Iong times. !fwe
Ginzburg-LandauTDGL) model in two dimensions after a only care abqut the magmtude of the velocity and integrate
quench from a disordered high temperature state to zero ter@Ut the directions, then in the caserof-d=2 we have the
perature. The dominant structures in the ordering kinetics ofPe€d probability distribution

this system are vortices with chargesl. Vortices with

higher order charges are unstable. Various aspects of the de- P(v) do= 2 do

fect structure have been explored in some detail b . S?(1+v?/s?)? '

We focus here on a numerical determination of the velocity

distribution of the vortices as a function of timteafter the  or equivalently

quench. Theory predictf4] that the distribution function

scales with the average vortex speed which is inversely pro- o 2av -

portional to a length scalk(t), which grows with timet P(v)dv= 11a0? v, 2

after the quenches. One also finds a large speed algebraic tail
in good agreement with predictions of an exponent&. In ) ) ~ — —
terms of the velocity distribution this corresponds to an exWith a=(m/2)* and v=v/v, where the average speed

ponent of— 4. The number of vortices is also counted and its= 7S/2- SO, after being scaled with the average speed, the

evolution in time is found to be consistent with previous

work [5]. z
The disordering agents in the phase ordering of the 2‘,1'.‘.‘\{1‘\{'{:-f';';‘;',3.§
=d=2 nonconserved TDGL model XY mode) are well =)

known, whered is the spatial dimension amdis the number
of the components of the order parameter. One has unit-1
charged vortices and, at nonzero temperature, spin waves. If
we focus on quenches to zero temperature, we have only the
vortices to consider. Thus a typical vortex configuration is
shown in Fig. 1. As the time evolves one has vortex antivor-
tex annihilation until finally there are no surviving vortices
and the system is fully orderg@ve only consider the zero-
temperature case with no thermal fluctuations, where the sys-
tem does eventually ordefFor generah=d, Rutenberg and
Bray [6] have shown that the growth law for such systems is
given by L(t)~t¥2 The exception is fom=d=2 where
their method is mute. The growth law for this case was
treated by Pargelli®t al. [7], and checked numerically by
Yurke et al.[5]. There is a logarithmic correction to the scal- g 1. A typical vortex configuration in a 256256 system
ing law: L(t)~[t/log(t)]"> with lattice spacingAr = m/4. The arrow on each each site repre-
There has also been theoretical work on the dynamics Odents the order parameter at that point. Not all the lattice sites are
these vortices. MazenKd] showed that if the order param- shown. The squares and triangles are in the core regiosslodnd
eter can be assumed to be a Gaussian figldvhen con- -1 vortices, respectively, where the magnitude of the order param-
strained to be near a vortex core, then the vortex velocitgter is near zero. The vortex core regions are picked out by using
probability distribution, fom=d [4,9], has the simple form the method described in the text.
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vortex speeds have the same probability distribution at dif-
ferent times. A key feature of the predictions @fv) is that
there is a large velocity algebraic tailv 3. This tail was
also found using scaling arguments by Bray0]. In this
paper we check these predictions numerically for the case
n=d=2. We find that velocity probability distribution func-
tion does obey scaling of the form predicted by Ez). But
the average speed falls off &s/? without the logarithmic
correction, and there is a large speed tail consistent with an
exponent of— 3.

We have also monitored the vortex dengityas a func-
tion of time and find, in agreement with previous wE,

0.01F
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1/2 . FIG. 2. The average spee_((t) of the vortices for the bigger
whereL,(t)<[t/In()}"* The vortex number density should system (r=m/4). The speed of each vortex is calculated with

gre prgpo(rt:IOEaEIZ;[Z)thzrsnsr:ﬁrr;?egn%%i%b?:etﬁf gg%ltjg? €A r=5. t~ is used to fit the datax=0.51=0.01 for the system
ay Eo P ’ . . with Ar=7/4. The data are averaged over 60 different initial con-

parameter of the systefsee Eq(4) below]. Our simulation  yuio 0o

verifies this result. '

in it. Here the coefficient 1/4 is appropriately chosen so that
no vortices are missed and no irrelevant points are picked. A
The system we study is described by the Langevin equatircular integration around each vortex produces 2r
tion —24r, which corresponds to two types of vortices of topo-
logical chargest1 and —1, respectively. In fact there are
I 5 - situations where we obtain charge 0. This is due to the non-
—r V() (4 zero area of the integration circle. When a pairiof and
—1 vortices annihilate and the distance between them be-

wherei=1,2 are the indices for the two components of thecomes smaller than the size of the integration circle, the cir-

order paramete@. The noise term is zero because the Sys_cular integration will reflect the sum of the two charges,

: : hich is 0. However, the lifetime of these O charges are
tem is quenched to zero temperature. By choosing prOpev?_luch smaller than the lifetime of the 1 vortices. So they

ndo not affect our statistics. We find in our simulations that the
r{1umbers of positive and negative vortices are equal.

The position of a vortex is given by the center of its core
region. Suppose the order parameter’s magnitude at the core
region is described b (x;,y;) with (x;,y;) belonging to
the core region. Then by fitting/(x;,y;) to the function
) 1 10 M (x,y) =A+ B[ (x—X0)?+ (Y—Yo)?] we can find the center
T2 te >~ pkh, (5 (XoYo) | _
3w 6/ 3 The positions of each vortex at different times are re-

corded, and the speed is calculated usirgAd/Ar. Here
where NN and NNN mean the nearest neighbors and nexiAd is the distance that the vortex travels in time. We
nearest neighbors, respectively, and the lattice pointAs have, simultaneously, recorded the number of vortices as a
=(k,l). HereAt is the time step andr is the lattice spac- function of time and checked the scaling result given by Eq.
ing. Both are dimensionless. 3.

We have studied two systems in some detail. In both we
choosee=0.1 and use 10241024 lattice sites. In system 1,
or the bigger system, we uskt=0.02 andAr=/4. In

system 2, or the smaller system, we use=0.01 andAr Every st=10 we compute the speed of each vortex with
=m/8. In both we measured the vortices number and they ;=5 i.e.,v=|r(t+A7)—r(t)|[/Ar, with t increasing by

system energy. We measured the vortex speed distributiogtep lengthst and r being the position of the vortex. We

only in the bigger system.' . . . ound that the average speed of the vorti?(:@ is propor-
We prepare the system mgallyln a completely disordere ional to t~*, with x=0.51+0.01 for the bigger system

state; The average magnitule of the vector order param- (Ar=7/4) as shown in Fig. 2. Unlike the case fbr(t)
eter ¢ at timet is calculated and the vortices’ core regions extracted frorm, and E— E,), we do not observe logarith-

are identified with those sites on which the order parameteic correction foru (t). We cannot rule out such corrections
magnitudeg /| <M/4. Usually each core has about ten sitesappearing on a longer time scale, but they do not enter on the

Il. SYSTEM DESCRIPTION

a square lattice with periodic boundary conditions and drive
by the finite difference scheme, i.e., replacifg;(r,t) by
[ (kI — ¢M(kI)]/At, with m being the time step num-
ber, andV?2y;(r,t) by

1
(Ar)?

V2 (kl) =

IIl. NUMERICAL RESULTS
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FIG. 3. The vortices’ speed distribution probability density for FIG. 4. The total number of the vortices per unit anegt)/S,
the Ar = /4 systemP(v/v(t)) (the solid ling fit to the function  timest, whereS=(1024Ar)2. In both systems,t/S can be fit to
P(x)=2ax/(1+ax?)?2, with a=2.12 andx=v/v(t). The theoreti- aIn(t/ty). The data from the large and the small systems are aver-
cal curve witha=(w/2)? is also shown in the figure. The large @ged over 68 and 58 different initial conditions, respectively.
speed tail of the distribution can be fit to¥ with y=3. The inset
shows the same data in the logarithmic scale, and it seems that thdowever, the power-law tail is quite robust. We alter the
the theoretical curve fits the tail better. The data are averaged overalue ofz between 0.4 and 0.6, and find that the tail expo-
60 different initial conditions. In the calculation of the probability nent changes by less than 0.1.

distribution we use the bin width of 0.02. In both the larger and smaller systems, the vortex number
. densities have the same time dependence. We oltain
same time scale as fdr,(t). ~[t/In(t/ty)]"*, wheren, is the number density of vortices

We compared the speed distribution at different timespositive or negativeandt, is a constant. In Fig. 4, we show
They have approximately the same shape after being rescalgge data fom,t/S. Sis the area of the system. In Fig. 5, we
by the average speed. At early times this is clear. At latgnow the data for the energy per unit ar&a{E,)/S timest.

times there are fewer data points and the similarity betweeqye conclude that the energy density is proportional to the
the two distributions at different times is not so apparentyymper density of the vortices.

Even at early times the number of data points are not enough
to give a good fit to the distribution’s long tail. So we rescale

the speed data with the best fit to the average sp_&(e):i V. CONCLUSIONS

«t~ %1 and put the data for all times into one histogram as \We have studied the growth kinetics of the nonconserved
shown in Fig. 3. By this means we obtain better statistics. Wa'DGL model in the case oh=d=2. We measured the
find that the distribution can be well fit to the function speed probability distribution for the- 1 vortices. At any
- given time with relatively few vortices, the statistics are
P()= 2av ©) poor. However, the accumulated data for all times when
(1+av?)?’
0.2 T T T T
for a between 2 and 2.5. The best fit is far2.12. How-
ever, if we require that the average speed is given by the
measured speed, then we must have(7/2)?=2.47. The 0.15f .
best fit and the most consistent fit are both shown in Fig. 3. £
The distribution has a long tail which is approximately g
(v/lv) Y with y=3. If we just try to fit the long tail, then the o 01 1
best fit is given bya=2.47. These results are in excellent R T Arome
guantitative agreement with the theoretical prediction in Ref. ~ j - (E-Eprt/5=004311n(t/99.8)
[4]. 0.05 _ ..... (E-E)t/S=0.0407In(t/ 72.9) i
In these results we have scaled the velocity with * by
takingz=x just as the theory predicts. However, the value of
scaling exponert of the speed distribution is not very robust O 2000 4000 00 8000
in our simulations. If we change the exponerand use ~~ Time

to rescale the sp(_eed distribution at different times, and th_ey FIG. 5. The product of the system energy per unit ara (
also have approximately the same shape. So the uncertainty,

. . . oS . Eo)/S with t. The ground state energy ig= — €2S/4. The data
of z 'S, quite large. After belng resgaled oy and pu'[,'nto can also be fit ta In(t/ty). The data from the large and the small
one histogram, the speed distribution for small and intermegystems are averaged over 68 and 58 different initial conditions,

diate values of are somewhat dependent on the value.of respectively.
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scaled gives a scaling function with good statistics. Althoughportional to the inverse of the correlation lengtft). We did
the scaling exponentis 0.5 with significant uncertainty, the not observe any logarithmic correction in the average speed,
large speed tail does takes the form ofi) ™Y with the although it appears in the correlation length wherd

exponenty=3. This is consistent with the theoretical predic- =2. However, a logarithmic behavior may still exist. The
tion. The form of the distributiof®(v) is quantitatively con- time we used in our simulations may not be long enough to

sistent with the theoretical prediction. see the effect. . .
Why does the theory do so well? It was shown by Ma- We also measured the number density of the vortices and

zenko and Wickhani11] that one can construct a nontrivial the eneLgythdﬁnsny Olf theﬂt}wq systemf:. The'r:. tlk:n.e depen-
self-consistent Gaussian theory for the order parameter if it ifences 0 ave a logarithmic correction, which 1S consis-

constrained to be evaluated near a vortex core. Such co ent with previous work.

straints occur natqrally, for example, in averages over th_e ACKNOWLEDGMENT
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